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Overview

In the lecture, we discuss how to evaluate multiple integrals by
substitution.

As in single integration, the goal of substitution is to replace complicated
integrals by ones that are easier to evaluate.

Substitutions accomplish this by simplifying the integrad, the limits of
integration, or both.
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Substitutions in Double Integrals

The polar coordinate substitution is a special
case of a more general substitution method for
double integrals, a method that pictures changes
in variables as transformations of regions.

Suppose that a region G in the uv -plane is trans-
formed one-to-one into the region R in the xy -
plane by equations of the form

x = g(u, v), y = h(u, v).
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Substitutions in Double Integrals

We call R the image of G under the transformation, and G the preimage
of R. Any function f (x , y) defined on R can be thought of as a function
f (g(u, v), h(u, v)) defined on G as well.

How is the integral of f (x , y) over R related to the integral of
g(g(u, v), h(u, v)) over G?

The answer is : If g , h, and f have continuous partial derivatives and
J(u, v) (to be discussed in a moment) is zero only at isolated points, if at
all, then∫∫

R

f (x , y) dx dy =

∫∫
G

f (f (u, v), h(u, v)) |J(u, v)| du dv .

The above derivation is intricate and properly belongs to a course in
advanced calculus. We do not give the derivation here.
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Notice the “Reversed” Order

The transforming equations

x = g(u, v) and y = h(u, v)

go from G to R, but we use them to change
an integral over R into an integral over G .

Thus the equations

x = g(u, v) and y = h(u, v)

allow us to change an integral over a region R
in the xy -plane into an integral over a region to
G in the uv -plane.
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Substitutions in Double Integrals

The factor J(u, v) is the Jacobian of the coordinate transformation,
named after German mathematician Carl Jacobi.

It measures how much the transformation is expanding or contracting the
area around a point in G as G is transformed into R.

Carl Gustav Jacob Jacobi

(1804-1851)
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Substitutions in Double Integrals

Definition 1.

The Jacobian determinant or Jacobian of the coordinate transformation
x = g(u, v), y = h(u, v) is

J(u, v) =

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂u

∣∣∣∣∣∣
The Jacobian is also denoted by J(u, v) = ∂(x ,y)

∂(u,v) to help remember how
the determinant is constructed from the partial derivatives of x and y .

Remember : As we are going from a old set of variables “x and y” to a
new set of variables “u and v”, x and y are to be integrated partially with
respect to u and v .
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Substitutions in Double Integrals - An Example

For polar coordinates, we have r and θ in place of u and v .

The transformation from Cartesian rθ-plane (not in polar coordinate
plane) to Cartesian xy -plane is given by x = r cos θ and y = r sin θ. The
Jacobian of the transformation is

J(r , θ) = r

and hence ∫∫
R

f (x , y) dx dy =

∫∫
G

f (r cos θ, r sin θ) |r | dr dθ.
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Substitutions in Double Integrals - An Example

We can drop the absolute value signs whenever r ≥ 0.
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Substitutions in Double Integrals - An Example

The equations x = r cos θ, y = r sin θ transform the rectangle

G : 0 ≤ r ≤ 1, 0 ≤ θ ≤ π/2

into the quarter circle R bounded by

x2 + y2 = 1

in the first quadrant of the xy -plane.

Notice that the integral on the right-hand side of the above equation is not
the integral of f (r cos θ, r sin θ) over a region in the polar coordinate plane.

It is the integral of the product of f (r cos θ, r sin θ) and r over a region G
in the Cartesian rθ-plane.
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Substitutions in Double Integrals - An Example

To evaluate ∫ 4

0

∫ x=(y/2)+1

x=y/2

2x − y

2
dx dy

by applying the transformation

u =
2x − y

2
, v =

y

2
,

and integrating over an appropriate region in the uv -plane.

We sketch the region R of integration in the xy -plane and identify its
boundaries.
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Substitutions in Double Integrals - An Example

We first need to find the corresponding uv -region G and the Jacobian of
the transformation.

Since x = u + v and y = 2v , we then find the boundaries of G by
substituting these expressions into the equations for the boundaries of R.

The Jacobian of the transformation is J(u, v) = 1.

Therefore∫ 4

0

∫ x=(y/2)+1

x=y/2

2x − y

2
dx dy =

∫ v=2

v=0

∫ u=1

u=0
u |J(u, v)| du dv

=

∫ v=2

v=0

∫ u=1

u=0
(u) (2) du dv = 2.
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Substitutions in Triple Integrals

Suppose that a region G in the uvw -space is transformed one-to-one into
the region D in xyz-space by differentiable equations of the form

x = g(u, v ,w), y = h(u, v ,w), z = k(u, v ,w).
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Substitutions in Triple Integrals

Then any function F (x , y , z) defined on D can be thought of as a function

F (g(u, v ,w), h(u, v ,w), k(u, v ,w)) = H(u, v ,w)

defined on G .

If g , h, and k have continuous first partial derivatives, then the integral
F (x , y , z) over D is related to the integral of H(u, v ,w) over G bt the
equation∫∫∫

D

F (x , y , z) dx dy dz =

∫∫∫
G

H(u, v ,w) |J(u, v ,w)| du dv dw .

The above derivation is intricate and properly belongs to a course in
advanced calculus. We do not give the derivation here.
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Substitutions in Triple Integrals

The factor J(u, v ,w) is the Jacobian determinant

J(u, v ,w) =

∣∣∣∣∣∣∣∣∣∣

∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂u

∂y
∂w

∂z
∂u

∂z
∂u

∂z
∂w

∣∣∣∣∣∣∣∣∣∣
=
∂(x , y , z)

∂(u, v ,w)
.

This determinant measures how much the volume near a point in G is
being expanded or contracted by the transformation from (u, v ,w) to
(x , y , z) coordinates.
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Substitutions in Triple Integrals - An Example

For cylindrical coordinates, r , θ, and z take the
place of u, v , and w .

The transformation from Cartesian rθz-space to
Cartesian xyz-space is given by the equations

x = r cos θ and y = r sin θ, z = z .

The Jacobian of the transformation is

J(r , θ, z) = r and hence

∫∫∫
D

F (x, y, z) dx dy dz =

∫∫∫
G

H(r cos θ, r sin θ, z) |r| dr dθ dz.

We can drop the absolute value signs whenever
r ≥ 0.
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Substitutions in Triple Integrals - An Example

For spherical coordinates, ρ, φ, and θ take the place of u, v , and w . The
transformation from Cartesian ρφθ-space to Cartesian xyz-space is given
by the equations

x = ρ sinφ cos θ y = ρ sinφ sin θ, z = ρ cosφ.

The Jacobian of the transformation is J(r , φ, θ) = ρ2 sinφ and hence∫∫∫
D

F (x , y , z) dx dy dz =

∫∫∫
G

H(rφ, θ) |ρ2 sinφ| dρ dφ dθ.
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Substitutions in Triple Integrals - An Example

We can drop the absolute value signs because sinφ is never negative for
0 ≤ φ ≤ π.
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Substitutions in Triple Integrals - An Example

To evaluate∫ 3

0

∫ 4

0

∫ x=(y/2)+1

x=y/2

(2x − y

2
+
z

3

)
dx dy dz

by applying the transformation

u =
2x − y

2
, v =

y

2
, w =

z

3

and integrating over an appropriate region in
the uvw -space.

We sketch the region D of integration in the
xyz-space and identify its boundaries. In this
case, the bounding surfaces are planes.
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Substitutions in Triple Integrals - An Example

We first need to find the corresponding uvw -region G and the Jacobian of
the transformation.

Since x = u + v , y = 2v , z = 3w , we then find the boundaries of G by
substituting these expressions into the equations for the boundaries of D.

The Jacobian of the transformation is J(u, v ,w) = 6.

Therefore∫ 3

0

∫ 4

0

∫ x=(y/2)+1

x=y/2

(2x − y

2
+

z

3

)
dx dy dz =

∫ 1

0

∫ 2

0

∫ 1

0
(u + w) |J(u, v ,w)| du dv dw

=

∫ 1

0

∫ 2

0

∫ 1

0
(u + w) (6) du dv dw

= 12.
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Exercise

Exercise 2.

(a) Solve the system

u = 3x + 2y , v = x + 4y

for x and y in terms of u and v. Then find the value of the Jacobian
∂(x , y)/∂(u, v).

(b) Find the image under the transformation

u = 3x + 2y , v = x + 4y

of the triangular region in the xy-plane bounded by the x-axis, the
y-axis, and the line x + y = 1. Sketch the transformed region in the
uv-plane.
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Solution for Exercise 2

(a) 3x + 2y = u and x + 4y = v ⇒ −5x = −2u + v and
y = 1

2 (u − 3x)⇒ x = 1
5 (2u − v) and y = 1

10 (3v − u);

∂(x ,y)
∂(u,v) =

∣∣∣∣ 2
5 −1

5
− 1

10
3

10

∣∣∣∣ = 6
50 −

1
50 = 1

10 .

(b) The x-axis y = 0⇒ u = 3v ; the y -axis x = 0
⇒ v = 2u; the line x + y = 1
⇒ 1

5 (2u − v) + 1
10 (3v − u) = 1

⇒ 2(2u − v) + (3v − u) = 10⇒ 3u + v = 10.
The transformed region is shown below.
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Exercise

Exercise 3.

Use the transformation

u = 3x + 2y , v = x + 4y

to evaluate the integral∫∫
R

(3x2 + 14xy + 8y2) dx dy

for the region R in the first quadrant bounded by the lines
y = −(3/2)x + 1, y = −(3/2)x + 3, y = −(1/4)x , and y = −(1/4)x + 1.
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Solution for Exercise 3

∫∫
R

(3x2 + 14xy + 8y2)dx dy

=
∫∫
R

(3x + 2y)(x + 4y) dx dy

=
∫∫
G

uv
∣∣∣ ∂(x,y)
∂(u,v)

∣∣∣ du dv = 1
10

∫∫
G

uv du dv ;

We find the boundaries of G from the boundaries of R, shown in the accompanying figure:
xy -eqns. for boundary of R Corresponding uv -eqns. for boundary of G Simplified uv -eqns.

y = − 3
2
x + 1 1

10
(3v − u) = − 3

10
(2u − v) + 1 u = 2

y = − 3
2
x + 3 1

10
(3v − u) = − 3

10
(2u − v) + 3 u = 6

y = − 1
4
x 1

10
(3v − u) = − 1

20
(2u − v) v = 0

y = − 1
4
x + 1 1

10
(3v − u) = − 1

20
(2u − v) + 1 v = 4

⇒ 1
10

∫∫
G

uv du dv = 1
10

∫ 6
2

∫ 4
0 uv dv du = 1

10

∫ 6
2 u
[
v2

2

]4

0
du = 4

5

∫ 6
2 u du =

(
4
5

) [
u2

2

]6

2
=(

4
5

)
(18− 2) = 64

5
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Exercise

Exercise 4.

Let R be the region in the first quadrant of the xy-plane bounded by the
hyperbolas xy = 1, xy = 9 and the lines y = x , y = 4x . Use the
transformation x = u/v , y = uv with u > 0 and v > 0 to rewrite∫∫

R

(√
x

y
+
√
xy

)
dx dy

as an integral over an appropriate region G in the uv-plane. Then evaluate
the uv-integral over G .
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Solution for Exercise 4

x = u
v

and y = uv ⇒ y
x

= v2 and xy = u2;

∂(x,y)
∂(u,v)

= J(u, v) =

∣∣∣∣v−1 −uv−2

v u

∣∣∣∣ = v−1u + v−1u = 2u
v

; y = x ⇒ uv = u
v
⇒ v = 1, and

y = 4x ⇒ v = 2; xy = 1⇒ u = 1, and xy = 9⇒ u = 3; thus∫∫
R

(√
y
x

+
√
xy
)
dx dy =

∫ 3
1

∫ 2
1 (v + u)

(
2u
v

)
dv du =

∫ 3
1

∫ 2
1

(
2u + 2u2

v

)
dv du =∫ 3

1

[
2uv + 2u2 ln v

]2
1
du =

∫ 3
1 (2u+2u2 ln 2)du =

[
u2 + 2

3
u2 ln 2

]3
1

= 8+ 2
3

(26)(ln 2) = 8+ 52
3

(ln 2)
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Exercise

Exercise 5.

(a) Find the Jacobian of the transformation x = u, y = uv and sketch the
region G : 1 ≤ u ≤ 2, 1 ≤ uv ≤ 2, in the uv-plane.

(b) Transform the integral ∫ 2

1

∫ 2

1

y

x
dy dx

into an equivalent integral.
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Solution for Exercise 5

(a) ∂(x,y)
∂(u,v)

= J(u, v) =

∣∣∣∣1 0
v u

∣∣∣∣ = u, and the region G is shown below.

(b) ∫ 2

1

∫ 2

1

y

x
dy dx =

∫ 2

1

∫ 2/u

1/u
uv dv du =

3

2
ln 2.
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The area of an ellipse

Exercise 6.

The area πab of the ellipse

x2/a2 + y2/b2 = 1

can be found by integrating the function f (x , y) = 1 over the region
bounded by the ellipse in the xy−plane.
Evaluating the integral directly requires a trigonometric substitution. An
easier way to evaluate the integral is to use the transformation

x = au, y = bv

and evaluate the transformed integral over the disk G : u2 + v2 ≤ 1 in the
uv−plane. Find the area this way.
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Solution for Exercise 6

∂(x ,y)
∂(u,v) = J(u, v) =

∣∣∣∣a 0
0 b

∣∣∣∣ = ab;

A =
∫∫
R

dy dx =
∫∫
G

ab du dv =
∫ 1
−1

∫ √1−u2

−
√

1−u2 ab dv du =

2ab
∫ 1
−1

√
1− u2du = 2ab

[
u
2

√
1− u2 + 1

2 sin−1 u
]1

−1
=

ab[sin−1 1− sin−1(−1)] = ab
[
π
2 −

(
−π

2

)]
= abπ
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Exercise

Exercise 7.

Use the transformation x = u + (1/2)v , y = v to evaluate the integral∫ 2

0

∫ (y+4)/2

y/2
y3(2x − y)e(2x−y)2

dx dy

by first writing it as, an integral over a region G in the uv-plane.
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Solution for Exercise 7

x = u + v
2 and y = v ⇒ 2x − y = (2u + v)− v = 2u and

∂(x ,y)
∂(u,v) = J(u, v) =

∣∣∣∣1 1
2

0 1

∣∣∣∣ = 1;
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Solution for Exercise 7 (contd...)

Next, u = x − v
2 = x − y

2 and v = y , so the boundaries of the region of
integration R in the xy -plane are transformed to the boundaries of G :

xy -eqns. Corresponding uv -eqns. Simplified uv -equations
x = y

2
u + v

2
= v

2
u = 0

x = y
2

+ 2 u + v
2

= v
2

+ 2 u = 2
y = 0 v = 0 v = 0
y = 2 v = 2 v = 2

⇒
∫ 2

0

∫ (y/2)+2
y/2 y3(2x − y)e(2x−y)2

dx dy =
∫ 2

0

∫ 2
0 v3(2u)e4u2

du dv =∫ 2
0 v3

[
1
4e

4u2
]2

0
dv = 1

4

∫ 2
0 v3(e16 − 1)dv = 1

4 (e16 − 1)
[
v4

4

]2

0
= e16 − 1
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Exercise

Exercise 8.

Use the transformation x = u/v , y = uv to evaluate the integral sum∫ 2

1

∫ y

1/y
(x2 + y2)dx dy +

∫ 4

2

∫ 4/y

y/4
(x2 + y2)dx dy .

P. Sam Johnson Substitutions in Multiple Integrals 34/46



Solution for Exercise 8

x = u
v and y = uv ⇒ y

x = v2 and xy = u2;

∂(x ,y)
∂(u,v) = J(u, v) =

∣∣∣∣v−1 −uv−2

v u

∣∣∣∣ = v−1u + v−1u = 2u
v ;

y = x ⇒ uv = u
v ⇒= 2; thus

∫ 2
1

∫ y
1/y (x2 + y2)dx dy =∫ 2

1

[
u4

2v3 + 1
2u

4v
]2

1
dv =

∫ 2
1

(
15

2v3 + 15v
2

)
dv =

[
− 15

4v2 + 15v2

4

]2

1
= 225

16 .
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Exercise

Exercise 9.

Find the Jacobian δ(x , y , z)/δ(u, v ,w) of the transformation

(a) x = u cos v , y = u sin v , z = w

(b) x = 2u − 1, y = 3v − 4, z = (1/2)(w − 4).
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Solution for Exercise 9

(a) x = u cos v , y = u sin v ,

z = w ⇒ ∂(x ,y ,z)
∂(u,v ,w) =

∣∣∣∣∣∣
cos v −u sin v 0
sin v u cos v 0

0 0 1

∣∣∣∣∣∣ = u cos2 v + u sin2 v = u

(b) x = 2u − 1, y = 3v − 4,

z = 1
2 (w − 4)⇒ ∂(x ,y ,z)

∂(u,v ,w) =

∣∣∣∣∣∣
2 0 0
0 3 0
0 0 1

2

∣∣∣∣∣∣ = (2)(3)( 1
2 ) = 3
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Substitutions in single integrals

Exercise 10.

How can substitutions in single definite integrals be viewed as
transformations of regions? What is the Jacobian in such a case? Illustrate
with an example.
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Solution for Exercise 10

Let u = g(x)⇒ J(x) = du
dx = g ′(x).

Then

∫ b

a
f (u)du =

∫ g(b)

g(a)
f (g(x))g ′(x)dx .

Note that g ′(x) represents the Jacobian of the transformation

u = g(x) or x = g−1(u).
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Exercise

Exercise 11.

Find the volume of the ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1,

using a suitable change of variables.
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Solution for Exercise 11

Let x = au, y = bv , and z = vw .

J(u, v ,w) =

∣∣∣∣∣∣
a 0 0
0 b 0
0 0 c

∣∣∣∣∣∣ = abc; the transformation takes the ellipsoid region

x2

a2
+

y2

b2
+

z2

c2
≤ 1

in xyz-space into the spherical region

u2 + v2 + w2 ≤ 1

in uvw -space (which has volume V = 4
3π).

Then V =
∫∫∫
R

dx dy dz =
∫∫∫
G

abc du dv dw = 4πabc
3 .
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Exercise

Exercise 12.

Evaluate ∫∫∫
|xyz | dx dy dz

over the solid ellipsoid
x2

a2
+

y2

b2
+

z2

c2
≤ 1,

using a suitable substitution.
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Solution for Exercise 12

Let x = au, y = bv , and z = vw .

J(u, v ,w) =

∣∣∣∣∣∣
a 0 0
0 b 0
0 0 c

∣∣∣∣∣∣ = abc; the transformation takes the ellipsoid region

x2

a2
+

y2

b2
+

z2

c2
≤ 1

in xyz-space into the spherical region G : u2 + v2 + w2 ≤ 1 in uvw -space.
Thus ∫∫∫

|xyz | dx dy dz =

∫∫∫
G

a2b2c2 uvw dw dv du.

Applying spherical coordinate system, we get V = a2b2c2

6 .
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Exercise

Exercise 13.

Let D be the region in xyz-space defined by the inequalities

1 ≤ x ≤ 2, 0 ≤ xy ≤ 2, 0 ≤ z ≤ 1.

Evaluate ∫∫∫
D

(x2y + 3xyz) dx dy dz

by applying the transformation

u = x , v = xy , w = 3z

and integrating over an appropriate region G in uvw-space.
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Solution for Exercise 13

Let u = x , v = xy , and w = z . Then J(u, v ,w) = 1
u .

Thus∫∫∫
D

(x2y + 3xyz) dx dy dz =

∫ 1

0

∫ 2

0

∫ 2

1

uv + 3vw

u
du dv dw = 2 + ln 8.
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